Bimanual activities like coffee stirring, which require coordination of dual arms, are common in daily life and intractable to learn by robots. Adopting reinforcement learning to learn these tasks is a promising topic since it enables the robot to explore how dual arms coordinate together to accomplish the same task. However, this field has two main challenges: coordination mechanism and long-horizon task decomposition. Therefore, we propose the Mixline method to learn sub-tasks separately via the online algorithm and then compose them together based on the generated data through the offline algorithm. We constructed a learning environment based on the GPU-accelerated Isaac Gym. In our work, the bimanual robot successfully learned to grasp, hold and lift the spoon and cup, insert them together and stir the coffee. The proposed method has the potential to be extended to other long-horizon bimanual tasks.
translated by 谷歌翻译
在无监督的域适应性(UDA)中,直接从源到目标域的适应通常会遭受明显的差异,并导致对齐不足。因此,许多UDA的作品试图通过各种中间空间逐渐和轻柔地消失域间隙,这些空间被称为域桥接(DB)。但是,对于诸如域自适应语义分割(DASS)之类的密集预测任务,现有的解决方案主要依赖于粗糙的样式转移以及如何优雅地桥接域的优雅桥梁。在这项工作中,我们诉诸于数据混合以建立用于DASS的经过经过经过经过讨论的域桥接(DDB),通过该域的源和目标域的联合分布与中间空间中的每个分布进行对齐并与每个分布。 DDB的核心是双路径域桥接步骤,用于使用粗糙和精细的数据混合技术生成两个中间域,以及一个跨路径知识蒸馏步骤,用于对两个互补模型进行对生成的中间样品进行培训的互补模型作为“老师”以多教老师的蒸馏方式发展出色的“学生”。这两个优化步骤以交替的方式工作,并相互加强以具有强大的适应能力引起DDB。对具有不同设置的自适应分割任务进行的广泛实验表明,我们的DDB显着优于最先进的方法。代码可从https://github.com/xiaoachen98/ddb.git获得。
translated by 谷歌翻译
图像重新捕获严重打破了人工智能(AI)系统的公平性,该系统通过重新捕获他人的图像来欺骗系统。大多数现有的重新捕获模型只能根据数据集使用固定的电子设备来解决基于模拟重新安装图像的数据集的单个重新捕获模式(例如,Moire,Edge,Tratifact等)。在本文中,我们将图像重新定义为图像恢复识别的四种模式,即Moire重新捕获,边缘重新捕获,伪影重新捕获和其他重新捕获。同时,我们提出了一种新颖的特征分离和动态融合(FDDF)模型,以适应地学习最有效的重新捕获特征表示,以覆盖不同的重新接收模式识别。此外,我们收集了包含各种重新捕获模式的大规模真实场景通用重新捕获(RUR)数据集,大约是先前发布的数据集数量的五倍。据我们所知,我们是第一个提出一个通用模型和一个通用的实体大规模数据集,用于重新捕获的图像法医。广泛的实验表明,我们提出的FDDF可以在RUR数据集上实现最先进的性能。
translated by 谷歌翻译
前列腺癌是美国男性癌症死亡的第二大原因。前列腺MRI的诊断通常依赖于准确的前列腺区域分割。但是,最新的自动分割方法通常无法产生前列腺区域的含有良好的体积分割,因为某些切片的前列腺MRI(例如碱基和顶点片)比其他切片更难分割。可以通过考虑相邻切片之间的跨片段关系来克服这一困难,但是当前的方法不能完全学习和利用这种关系。在本文中,我们提出了一种新型的跨板夹心注意机制,我们在变压器模块中使用该机制,以系统地学习不同尺度的跨斜纹关系。该模块可以在任何基于Skip Connections的现有基于学习的细分框架中使用。实验表明,我们的跨板块注意力能够捕获前列腺区域分割中的跨板片信息,并提高当前最新方法的性能。我们的方法提高了外围区域的分割精度,从而使所有前列腺切片(Apex,Mid-Gland和Base)的分割结果保持一致。
translated by 谷歌翻译
骨质疏松症是一种常见的慢性代谢骨病,通常是由于对骨矿物密度(BMD)检查有限的有限获得而被诊断和妥善治疗,例如。通过双能X射线吸收测定法(DXA)。在本文中,我们提出了一种方法来预测来自胸X射线(CXR)的BMD,最常见的和低成本的医学成像考试之一。我们的方法首先自动检测来自CXR的局部和全球骨骼结构的感兴趣区域(ROI)。然后,开发了一种具有变压器编码器的多ROI深模型,以利用胸部X射线图像中的本地和全局信息以进行准确的BMD估计。我们的方法在13719 CXR患者病例中进行评估,并通过金标准DXA测量其实际BMD评分。该模型预测的BMD与地面真理(Pearson相关系数0.889腰腰1)具有强烈的相关性。当施用骨质疏松症筛查时,它实现了高分类性能(腰腰1的AUC 0.963)。作为现场使用CXR扫描预测BMD的第一次努力,所提出的算法在早期骨质疏松症筛查和公共卫生促进中具有很强的潜力。
translated by 谷歌翻译
膝关节骨关节炎(OA)是一种常见的堕落联合障碍,影响全世界的大型老年人。膝关节OA严重程度的准确放射线摄影评估在慢性患者管理中起着关键作用。目前临床采用的膝盖oA分级系统是观察者主观的,遭受帧间间的分歧。在这项工作中,我们提出了一种计算机辅助诊断方法,可以同时为两种复合材料和细粒度的OA等级提供更准确和一致的评估。提出了一种新的半监督学习方法,通过从未标记的数据学习来利用复合材料和细粒度的OA等级的潜在一致性。通过使用预先训练的高斯混合模型的日志概率表示等级相干性,我们制定了不连贯的损失,以纳入训练中的未标记数据。该方法还描述了基于关键点的汇集网络,其中从疾病目标键点(沿膝关节提取)汇集了深度图像特征,以提供更准确的和病于病理信息的特征表示,以获得准确的OA级评估。拟议的方法在公共骨关节炎倡议(OAI)数据上全面评估了4,796名科目的多中心的十年观测研究。实验结果表明,我们的方法对以前的强大的整个图像的深度分类网络基线(如Resnet-50)的显着改进。
translated by 谷歌翻译
在线广告中,自动竞标已成为广告商通过简单地表达高级活动目标和约束来优化其首选广告性能指标的重要工具。以前的作品从单个代理的视图中设计了自动竞争工具,而不会在代理之间建模相互影响。在本文中,我们从分布式多功能代理人的角度来看,请考虑这个问题,并提出一个常规$ \强调{m} $ ulti - $ \强调{a} $ gent加强学习框架,以便为$ clown {a} $ uto - $ \ Underline {b} $ IDDIND,即MAAB,了解自动竞标策略。首先,我们调查自动招标代理商之间的竞争与合作关系,并提出了一个温度定期的信用分配,以建立混合合作竞争范式。通过在代理商中仔细开展竞争和合作权衡,我们可以达到均衡状态,不仅担保个人广告商的实用程序,而且保证了系统性能(即社会福利)。其次,为避免竞争低价潜在勾结行为的合作,我们进一步提交了律师代理,为每位专家设定个性化招标酒吧,然后减轻由于合作而导致的收入退化。第三,要在大型广告系统中部署MAAB,我们提出了一种平均现场方法。通过将具有与平均自动竞标代理商相同的广告商进行分组,大规模广告商之间的互动大大简化,使得培训MAAB有效地培训。在离线工业数据集和阿里巴巴广告平台上进行了广泛的实验表明,我们的方法在社会福利和收入方面优于几种基线方法。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译